giải hệ phương trình:
a)\(\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\5yz=6\left(y-z\right)\\4xz=3\left(x+y\right)\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\\7x-3y+2z=37\end{matrix}\right.\)
giải hệ phương trình bằng pp sd bđt:
\(\left\{{}\begin{matrix}x+y^2+z^3=14\\\left(\dfrac{1}{2x}+\dfrac{1}{3y}+\dfrac{1}{6z}\right)\left(\dfrac{x}{2}+\dfrac{y}{3}+\dfrac{z}{6}\right)=1\end{matrix}\right.\)
a) Cho x,y,z thỏa mãn x+y+z+xy+yz+zx=6. Tìm Min \(P=x^2+y^2+z^2\)
giải hệ pt : 1) \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}+\sqrt{2-\dfrac{1}{y}}=2\\\dfrac{1}{\sqrt{y}}+\sqrt{2-\dfrac{1}{x}}=2\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^4+x^2y^2+y^4=21\end{matrix}\right.\)
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)
5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)
6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\\\dfrac{2}{xy}-\dfrac{1}{z^2}=4\end{matrix}\right.\)
Cho x, y, z là các số thoả mãn:
\(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{12}-\dfrac{z}{4}=1\\\dfrac{x}{10}+\dfrac{y}{5}+\dfrac{z}{3}=1\end{matrix}\right.\)
Tính \(M=x^{10}+y^{100}+z^{1000}\)
Cho các số x, y, z thoả mãn: \(\left\{{}\begin{matrix}x+y+z=a\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{c}\\x^2+y^2+z^2=b^2\end{matrix}\right.\)
Tính \(P=x^3+y^3+z^3\) theo a, b, c.
\(\left\{{}\begin{matrix}\dfrac{2x^2}{1+x^2}=y\\\dfrac{2y^2}{1+y^2}=z\\\dfrac{2z^2}{1+z^2}=x\end{matrix}\right.\)
Giải hpt:\(\left\{{}\begin{matrix}\dfrac{2x^2}{1+x}=y\\\dfrac{2y^2}{1+y}=z\\\dfrac{2z^2}{1+z}=x\end{matrix}\right.\)