Giải hpt:\(\left\{{}\begin{matrix}\dfrac{2x^2}{1+x}=y\\\dfrac{2y^2}{1+y}=z\\\dfrac{2z^2}{1+z}=x\end{matrix}\right.\)
1)\(\left\{{}\begin{matrix}2x+\dfrac{1}{y}=\dfrac{3}{x}\\2y+\dfrac{1}{x}=\dfrac{3}{y}\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}x^3=3x+8y\\y^3=3y+8x\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x^2+y^2+x-2y=2\\x^2+y^2+2x+2y=11\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}x^3-y=1\\3x^2-3xy+y^2=1\end{matrix}\right.\)
5)\(\left\{{}\begin{matrix}x^3-y^3=9\\\left(x-y\right)\left(x^2+y^2\right)=15\end{matrix}\right.\)
giải hệ pt:
(1) \(\left\{{}\begin{matrix}x^2-3xy+2y^2=0\\3x+y=6\end{matrix}\right.\)
(2)\(\left\{{}\begin{matrix}\dfrac{x-1}{2x+1}-\dfrac{y-2}{y+2}=1\\\dfrac{3x-3}{2x+1}+\dfrac{2y-4}{y+2}=3\end{matrix}\right.\)
(3)\(\left\{{}\begin{matrix}2\left(x+y\right)+\sqrt{x+1}=4\\x+y-3\sqrt{x+1}=-5\end{matrix}\right.\)
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)
5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)
6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2x^2}{x^2+1}=y\\\dfrac{3y^3}{y^4+y^2+y}=z\\\dfrac{4z^4}{z^6+z^4+z^2+1}=x\end{matrix}\right.\)
Giải hpt:
\(\left\{{}\begin{matrix}\dfrac{2x^2}{1+y^2}=y\\\dfrac{2y^2}{1+z^2}=z\\\dfrac{2z^2}{1+x^2}=x\end{matrix}\right.\)
a) Cho x,y,z thỏa mãn x+y+z+xy+yz+zx=6. Tìm Min \(P=x^2+y^2+z^2\)
giải hệ pt : 1) \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}+\sqrt{2-\dfrac{1}{y}}=2\\\dfrac{1}{\sqrt{y}}+\sqrt{2-\dfrac{1}{x}}=2\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^4+x^2y^2+y^4=21\end{matrix}\right.\)
\(\left\{{}\begin{matrix}0< z\le y\le z\le3\\\dfrac{3}{xy}+\dfrac{2}{yz}\ge1\\\dfrac{18}{x^2y}+\dfrac{4}{y^2z}+\dfrac{3}{z^2x}\ge3\end{matrix}\right.\)
tìm max \(P=\dfrac{1}{2xyz}+\dfrac{80}{27x^3}+\dfrac{18}{8y^3}\)
giải hpt: a,\(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^4+y^4+x^2y^2=21\end{matrix}\right.\) b,\(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=7\\x^2-y^2+\dfrac{1}{x^2}-\dfrac{1}{y^2}=21\end{matrix}\right.\)