Áp dụng BĐT cauchy ta có:
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}\cdot2\sqrt{\dfrac{1}{ab}}=4\sqrt{ab\cdot\dfrac{1}{ab}}=4\)
Dấu \("="\Leftrightarrow a=b\)
Áp dụng BĐT cauchy ta có:
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}\cdot2\sqrt{\dfrac{1}{ab}}=4\sqrt{ab\cdot\dfrac{1}{ab}}=4\)
Dấu \("="\Leftrightarrow a=b\)
Cho a,b,c thỏa \(a+b+c\le k\) thì \(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge\left(1+\dfrac{3}{k}\right)^3\)
Cho a,b,c>0 và a+b+c=căn a +căn b +căn c=2.Tính A=
\(\left(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+b}+\dfrac{\sqrt{c}}{1+c}\right)\left(\sqrt{1+a}\right)\left(\sqrt{1+b}\right)\left(\sqrt{1+c}\right)\)
Cho ba số thực dương a,b,c thỏa mãn a+b+c ≤ 2 . Tìm giá trị nhỏ nhất của biểu thức : P = \(\dfrac{b\left(a^2+1\right)^2}{a^2\left(b^2+1\right)}+\dfrac{c\left(b^2+1\right)^2}{b^2\left(c^2+1\right)}+\dfrac{a\left(c^2+1\right)^2}{c^2\left(a^2+1\right)}\)
Giúp mình với mình
cho các số thực không âm a,b,c chứng minh:
1, \(a^3+b^3\)≥\(ab\left(a+b\right)\)
2, \(\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\)≤\(\dfrac{1}{abc}\) (với a,b,c>0)
3, \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)≥8abc
mng tham khảo giải giúp em vớiii
Cho a,b,c là cái số thực dương thỏa mãn a + b + c = 1 . Tìm giá trị nhỏ nhất của biểu thức : Q = \(\dfrac{\left(1-c\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}+\dfrac{\left(1-a\right)^2}{\sqrt{2\left(c+a\right)^2+ca}}\) + \(\dfrac{\left(1-b\right)^2}{\sqrt{2\left(a+b\right)^2+ab}}\)
3.P=\(\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right)\):\(\left(\dfrac{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)
a)Rút gọn P
b)Tìm những giá trị nguyên của a để P có giá trị nguyên
Cho 3 số thực dương a,b,c thỏa mãn:
\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)+2021\)
Tìm giá trị lớn nhất của P=\(\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
mong mọi người giúp mình câu này
cho a,b,c >0 có \(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}=1\) tìm giá trị lớn nhất của \(\dfrac{a}{\sqrt{bc\left(a^2+1\right)}}+\dfrac{b}{\sqrt{ca\left(b^2+1\right)}}+\dfrac{c}{\sqrt{ab\left(c^2+1\right)}}\)
b / Cho a, b, c là 3 số hữu tỉ khác nhau đôi một
Chứng minh A= \(\sqrt{\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}}\) là số hữu tỉ