Theo tính chất 2 tiếp tuyến: \(\left\{{}\begin{matrix}AC=CM\\BD=DM\end{matrix}\right.\) \(\Rightarrow\dfrac{CM}{DM}=\dfrac{AC}{BD}\)
Mặt khác do AC//BD (cùng vuông góc AB)
\(\Rightarrow\dfrac{AC}{BD}=\dfrac{CN}{BN}\) (Talet) \(\Rightarrow\dfrac{CM}{DM}=\dfrac{CN}{BN}\Rightarrow MN||BD\)
Cũng theo Talet: \(\dfrac{CN}{BN}=\dfrac{AN}{DN}\Rightarrow\dfrac{BC}{BN}=\dfrac{AD}{DN}\Rightarrow\dfrac{BN}{BC}=\dfrac{ND}{AD}\) (1)
\(\dfrac{MN}{AC}=\dfrac{ND}{AD}\) ; \(\dfrac{NH}{AC}=\dfrac{BN}{BC}\) (2)
(1); (2) \(\Rightarrow\dfrac{MN}{AC}=\dfrac{NH}{AC}\Rightarrow MN=NH\)