Violympic toán 9

Ngoclinhk6

Làm hộ mình câu 3 hình với ạ ^^undefined

Nguyễn Việt Lâm
23 tháng 2 lúc 22:54

Kẻ đường kính AF, gọi G là trung điểm CF \(\Rightarrow\) G cố định. Nối GH cắt AN kéo dài tại J

ANCF nội tiếp \(\Rightarrow\widehat{ANC}+\widehat{AFC}=180^0\)

G và H là trung điểm các dây CF, CN \(\Rightarrow\left\{{}\begin{matrix}OH\perp CN\\OG\perp CF\end{matrix}\right.\)

\(\Rightarrow OHCG\) nội tiếp \(\Rightarrow\widehat{OHG}=\widehat{OCG}\) (cùng chắn OG)

Mà \(\widehat{OCG}=\widehat{AFC}\) (2 góc đáy tam giác OCF cân) 

\(\Rightarrow\widehat{OHG}=\widehat{AFC}\Rightarrow\widehat{OHG}+\widehat{ANC}=180^0\)

Lại có \(\widehat{GHC}=\widehat{NHJ}\) (đối đỉnh), \(\widehat{OHG}+\widehat{GHC}=90^0\)

\(\Rightarrow\widehat{OHG}=90^0-\widehat{GHC}=90^0-\widehat{NHJ}\)

\(\Rightarrow\widehat{ANC}+90^0-\widehat{NHJ}=180^0\Rightarrow\widehat{ANC}-\widehat{NHJ}=90^0\)

\(\Leftrightarrow\widehat{NJH}+\widehat{NHJ}-\widehat{NHJ}=90^0\Leftrightarrow\widehat{NJH}=90^0\)

Hay \(GH\perp AN\)

Mà \(IH\perp AN\Rightarrow I\) trùng J hay G;H;I thẳng hàng

\(\Rightarrow\) IH luôn đi qua G cố định

Do I \(AI\perp IG\Rightarrow I\) luôn thuộc đường tròn đường kính AG cố định

Bình luận (0)
Nguyễn Việt Lâm
23 tháng 2 lúc 22:55

Hình vẽ:

undefined

Bình luận (2)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN