Kẻ đường kính AF, gọi G là trung điểm CF \(\Rightarrow\) G cố định. Nối GH cắt AN kéo dài tại J
ANCF nội tiếp \(\Rightarrow\widehat{ANC}+\widehat{AFC}=180^0\)
G và H là trung điểm các dây CF, CN \(\Rightarrow\left\{{}\begin{matrix}OH\perp CN\\OG\perp CF\end{matrix}\right.\)
\(\Rightarrow OHCG\) nội tiếp \(\Rightarrow\widehat{OHG}=\widehat{OCG}\) (cùng chắn OG)
Mà \(\widehat{OCG}=\widehat{AFC}\) (2 góc đáy tam giác OCF cân)
\(\Rightarrow\widehat{OHG}=\widehat{AFC}\Rightarrow\widehat{OHG}+\widehat{ANC}=180^0\)
Lại có \(\widehat{GHC}=\widehat{NHJ}\) (đối đỉnh), \(\widehat{OHG}+\widehat{GHC}=90^0\)
\(\Rightarrow\widehat{OHG}=90^0-\widehat{GHC}=90^0-\widehat{NHJ}\)
\(\Rightarrow\widehat{ANC}+90^0-\widehat{NHJ}=180^0\Rightarrow\widehat{ANC}-\widehat{NHJ}=90^0\)
\(\Leftrightarrow\widehat{NJH}+\widehat{NHJ}-\widehat{NHJ}=90^0\Leftrightarrow\widehat{NJH}=90^0\)
Hay \(GH\perp AN\)
Mà \(IH\perp AN\Rightarrow I\) trùng J hay G;H;I thẳng hàng
\(\Rightarrow\) IH luôn đi qua G cố định
Do I \(AI\perp IG\Rightarrow I\) luôn thuộc đường tròn đường kính AG cố định