a: \(=\dfrac{\sqrt{5b}}{7a\sqrt{a}}\)
b: \(=7xy\cdot\dfrac{\sqrt{-3x}}{\sqrt{xy}}=7\sqrt{xy\cdot\left(-3x\right)}\)
c: \(=\sqrt{\dfrac{5}{59}}\cdot\dfrac{x\sqrt{x}}{\sqrt{y}}\cdot x=\sqrt{\dfrac{5}{59}}\cdot\dfrac{x^2\sqrt{x}}{\sqrt{y}}\)
a: \(=\dfrac{\sqrt{5b}}{7a\sqrt{a}}\)
b: \(=7xy\cdot\dfrac{\sqrt{-3x}}{\sqrt{xy}}=7\sqrt{xy\cdot\left(-3x\right)}\)
c: \(=\sqrt{\dfrac{5}{59}}\cdot\dfrac{x\sqrt{x}}{\sqrt{y}}\cdot x=\sqrt{\dfrac{5}{59}}\cdot\dfrac{x^2\sqrt{x}}{\sqrt{y}}\)
bài 1:khử mẫu ở biểu thức lấy căn
a.-xy\(\sqrt{\dfrac{y}{x}}\)với x>0, y≥0
b.\(\sqrt{\dfrac{-3x^3}{35}}\)với x<0
c.\(\sqrt{\dfrac{5a^3}{49b}}\)với a≥0, b>0
d.-7xy\(\sqrt{\dfrac{3}{xy}}\)với x<0, y<0
Bài 1: Khử mẫu của biểu thức lấy căn:
a) \(xy\sqrt{\dfrac{x}{y}}\)
b) \(\sqrt{\dfrac{5a^3}{49b}}\left(a\ge0,b>0\right)\)
Bài 2:Trục căn thức ở mẫu:
a) \(\dfrac{\sqrt{3}-3}{1-\sqrt{3}}\)
b) \(\dfrac{5-\sqrt{15}}{\sqrt{3}-\sqrt{5}}\)
c) \(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}\)
Khử mẫu của mỗi biểu thức lấy căn và rút gọn (nếu được)
a) \(\sqrt{\dfrac{2}{3}}\)
b) \(\sqrt{\dfrac{x^2}{5}}\) với \(x\ge0\)
c) \(\sqrt{\dfrac{3}{x}}\) với \(x>0\)
d) \(\sqrt{x^2-\dfrac{x^2}{7}}\) với \(x< 0\)
Khử mẫu của biểu thức lấy căn
\(a,\sqrt{\dfrac{-2}{3a^2}}\) (a<0)
\(b,\sqrt{\dfrac{1}{200}}\)
\(c,\sqrt{\dfrac{7}{500}}\)
\(d,\sqrt{\dfrac{3}{98}}\)
\(e,\sqrt{\dfrac{\left(1-\sqrt{2}\right)^2}{8}}\)
\(f,a\sqrt{\dfrac{1}{a}}\left(a>0\right)\)
\(g,\sqrt{\dfrac{4a^3}{64b}}\left(a,b< 0\right)\)
\(h,2ab\sqrt{\dfrac{3}{ab}}\left(ab>0\right)\)
Cm
a.\(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}=\dfrac{\sqrt{6}}{6}\)
b. \(\dfrac{\sqrt{y}}{x-\sqrt{xy}}+\dfrac{\sqrt{x}}{y-\sqrt{xy}}=-\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)với x>0, y>o và x≠y
khử mẫu của biểu thức lấy căn
a.\(\sqrt{\dfrac{4}{5}}\)
b.\(\sqrt{\dfrac{3}{125}}\)
c.\(\sqrt{\dfrac{3}{2a^3}}\) với a>0
trục căn thức ở mẫu
a.\(\dfrac{5}{3\sqrt{8}}\) , \(\dfrac{2}{\sqrt{b}}\) với b>0
b.\(\dfrac{5}{5-2\sqrt{3}}\), \(\dfrac{2a}{1-\sqrt{a}}\) với a\(\ge\)0 và a\(\ne\)1
c. \(\dfrac{4}{\sqrt{7}+\sqrt{5}}\) , \(\dfrac{6a}{2\sqrt{a}-\sqrt{b}}\) với a>b>0
Khử mẫu của biểu thức lấy căn:
\(ab\sqrt{\dfrac{a}{b}};\dfrac{a}{b}\sqrt{\dfrac{b}{a}};\sqrt{\dfrac{1}{b}+\dfrac{1}{b^2}};\sqrt{\dfrac{9a^3}{36b}};3xy\sqrt{\dfrac{2}{xy}}.\)
(Giả thiết các biểu thức có nghĩa).
khử mẫu bt lấy căn :
a) \(3xy\cdot\sqrt{\dfrac{2}{xy}}\)
b)\(x\cdot\sqrt{\dfrac{6}{x}}+\sqrt{\dfrac{2x}{3}}\)
c) \(xy\cdot\sqrt{\dfrac{1}{xy}}+x\cdot\sqrt{\dfrac{y}{x}}-y\cdot\sqrt{\dfrac{x}{y}}\)
- Khử mẫu của biểu thức lấy căn ( mình làm rồi nhưng hơi nghi ngờ về kết quả nên muốn kiểm tra lại ) :
a) \(x\sqrt{\dfrac{6}{x}}+\sqrt{\dfrac{2x}{3}}\)
b) \(xy\sqrt{\dfrac{1}{xy}}+x\sqrt{\dfrac{y}{x}}-y^2\sqrt{\dfrac{x}{y}}\)