Kiểu 1 :
Lấy 8 số tự nhiên đó chia cho 7 ta được 7 giá trị dư từ 1 đến 7
Theo nguyên lí Dirichlet sẽ có 2 số có cùng số dư khi chia cho 7
Gọi 2 số đó là abc và deg
Ta có :
abc-deg chia hết cho 7
abcdeg=1001abc-(abc-deg)
Vì 1001abc chia hết cho 7 nên 1001abc-(abc-deg) chia hết cho 7
Vậy trong 8 số tự nhiên có 3 chữ số bao giờ cũng chọn ra 2 số mà khi viết liền nhau tạo được 1 số có 6 chữ số chia hết cho 7
Kiểu 2 :
Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư
Nên hiệu của chúng chia hết cho 13
Gọi số có 6 chữ số chia hết cho 13 là abcdeg (có gạch trên đầu) thì abc-deg chia hết cho 13
Ta có: abcdeg + (abc-deg)
= abcdeg + abc-deg
= 1000.abc + deg + abc - deg
= (1000+1).abc + (deg-deg)
= 1001.abc + 0 = 1001.abc
Vì 1001 chia hết cho 13 nên 1001.abc cũng chia hết cho 13
=> abcdeg + (abc-deg) chia hết cho 13
Mà abc-deg chia hết cho 13
Nên abcdeg chia hết cho 13
Vây trong 14 số đó tồn tại 2 số mà khi viết liên nhau thì tạo thành số có 6 chữ số chia hết cho 13