nhân x vào -> tách ra 2 tích phân riêng lẻ
rồi giải theo cơ bản là ra
có gì thắc mắc thì cmt or inbox FB của tớ nhé.
x
nhân x vào -> tách ra 2 tích phân riêng lẻ
rồi giải theo cơ bản là ra
có gì thắc mắc thì cmt or inbox FB của tớ nhé.
x
Tìm các nguyên hàm sau:
a) \(I_1=\int\frac{\left(x^2+3\right)dx}{\sqrt{\left(2x-5\right)^3}}\)
b)\(I_2=\int\frac{dx}{\left(3x-1\right)\ln\left(3x-1\right)}\)
c) \(I_3=\int\frac{\left(x^2+1\right)dx}{\sqrt{x^6-7x^4+x^2}}\)
tính giúp tôi nguyên hàm của câu này cái \(\int\frac{3x+4}{\left(1-x\right)^2\left(x+3\right)}dx\)
1)\(\int\limits^1_0\frac{\left(3x^2+2\right)}{x^3+x^2+1}dx\)
2)\(\int\limits^1_0\frac{x}{x^{2+4}}dx\)
1)\(\int\limits^1_0\frac{\left(3x^2+2\right)}{x^3+x^2+1}dx\)
2)\(\int\limits^1_0\frac{x}{x^2+4}dx\)
Tìm các nguyên hàm sau đây bằng các phép hữu tỉ hóa
a) \(I_1=\int\frac{e^{3x}}{e^2+2}dx\)
b) \(I_2=\int\frac{\sqrt{x}}{x+\sqrt[3]{x^2}}dx\)
c) \(I_1=\int\frac{1}{x^2-1}\left[\sqrt[3]{\left(\frac{x+1}{x-1}\right)^5}\right]dx\)
Tìm các nguyên hàm sau :
a) \(I_1=\int\log_2\left(1-3x\right)dx\)
b) \(I_2=\int\left(2x-3\right)\left(\ln x\right)^2dx\)
c)\(I_3=\int\left(4x^2+6x-7\right)\ln xdx\)
d) \(I_4=\int\left(x^2-2x+3\right)a^xdx\) 0<a, \(a\ne1\)
Cho hàm số \(f\left(x\right)=x^3-4x\int_0^1\left|f\left(x\right)\right|dx\) và \(f\left(1\right)>0\) . Khi đó \(f\left(4\right)=?\)
Tìm nguyên hàm các hàm số lượng giác sau :
a) \(\int\frac{dx}{\cos^2x\sin^2x}\) b) \(\int\left(\tan x+\cot x\right)^2dx\)
c) \(\int\tan^2xdx\) d) \(\int\left(5^{3x}+\frac{1}{\sin^2\left(2x+1\right)}+\frac{1}{\sqrt[5]{4x-1}}\right)dx\)
Cho hàm số f(x) có đạo hàm liên tục trên đoạn \(\left[0;1\right]\) thoả mãn \(f\left(1\right)=0\) ; \(\int\limits^1_0\left[f'\left(x\right)\right]^2dx=7\) và \(\int\limits^1_0x^2f\left(x\right)dx=\dfrac{1}{3}\) . Tính \(I=\int\limits^1_0f\left(x\right)dx\) .