Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bon Bòn

hãy chứng tỏ rằng tổng s=1/2+1/3+1/4+...+1/16 ko phải là số tự nhiên

giúp mik vs

Isolde Moria
10 tháng 8 2016 lúc 13:25

Ta có

\(A=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)+\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)+\left(\frac{1}{15}+\frac{1}{16}\right)\)

Vì \(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}< \frac{1}{6}.3=\frac{1}{2}\)

    \(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}< \frac{1}{9}.3=\frac{1}{3}\)

   \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}< \frac{1}{12}.3=\frac{1}{4}\)

   \(\frac{1}{15}+\frac{1}{16}< \frac{1}{10}.2=\frac{1}{5}\)

=> \(S< 2\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)< 2\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=3\)

=> S<3 (1) 

Lập luận tương tự ta có

\(S>2\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)>2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=2\)

=> S>2 (2)

Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.


Các câu hỏi tương tự
Van Tử Lam
Xem chi tiết
Búp Bê
Xem chi tiết
pham huu huy
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết
Hung Nguyen
Xem chi tiết
Hung Nguyen
Xem chi tiết
Rin Love You
Xem chi tiết
Diệp Vô Nguyệt
Xem chi tiết
Thiên thần chính nghĩa
Xem chi tiết