\(Cauchy-Schwarz:\dfrac{x^4}{a}+\dfrac{y^4}{b}\ge\dfrac{\left(x^2+y^2\right)^2}{a+b}\)
Dấu "=" \(\Leftrightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}\)
\(Cauchy-Schwarz:\dfrac{x^4}{a}+\dfrac{y^4}{b}\ge\dfrac{\left(x^2+y^2\right)^2}{a+b}\)
Dấu "=" \(\Leftrightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}\)
giải hpt: a,\(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^4+y^4+x^2y^2=21\end{matrix}\right.\) b,\(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=7\\x^2-y^2+\dfrac{1}{x^2}-\dfrac{1}{y^2}=21\end{matrix}\right.\)
Cho các số thực a,b,x,y thõa mãn \(x^2+y^2=1,\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\).
C/m : \(\dfrac{x^{2n}}{a^n}+\dfrac{y^{2n}}{b^n}=\dfrac{2}{\left(a+b\right)^n},\forall n\in N\)
Bài 1: Tìm x:
a) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
b) \(\left|\dfrac{5}{3}x\right|=\left|-\dfrac{1}{6}\right|\)
c) \(\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|-\dfrac{3}{4}=\left|-\dfrac{3}{4}\right|\)
Bài 2: Tìm x,y:
a) \(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=\dfrac{1}{4}-\left|y\right|\)
b) \(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)
Bài 3: Tìm giá trị nhỏ nhất:
a) A= \(\left|x+\dfrac{15}{19}\right|-1\)
b) B= \(\dfrac{1}{2}+\left|x-\dfrac{4}{7}\right|\)
Bài 4: Tìm giá trị lớn nhất:
a) A= 5- \(\left|\dfrac{5}{3}-x\right|\)
b) B= 9-\(\left|x-\dfrac{1}{10}\right|\)
a,\(\left\{{}\begin{matrix}\dfrac{y}{2}-\dfrac{x+y}{5}=0,1\\\dfrac{y}{5}-\dfrac{x-y}{2}=0,1\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x+y=140\\x-\dfrac{x}{8}=y+\dfrac{x}{8}\end{matrix}\right.\)
Cho P = \(\dfrac{y-x}{xy}:\left(\dfrac{y^2}{\left(x-y\right)^2}-\dfrac{2x^2y}{\left(x^2-y^2\right)^2}+\dfrac{x^2}{y^2-x^2}\right)\)
Voi x>0>y va x+y = 1
a/ Rut gon P
b/ Chung minh P < -4
a,Cho a +b =2 C/m \(B=a^5+b^5\ge2\)
b,Cho các số dường a,b,x,y t/m ĐK \(x^2+y^2=1\) và \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\).C/m \(\dfrac{x}{\sqrt{a}}+\dfrac{\sqrt{b}}{y}\ge2\)
c,Với x,y là các số dương t/m: \(\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2=2010\) .Tính \(A=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)
d,Chứng minh A=\(A=\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\) có giá trị là 1 số tự nhiên
Cho x, y > 0 thoả mãn \(x+y\ge4\). Tìm GTNN của các biểu thức sau:
a) \(A=x+y+\dfrac{1}{x}+\dfrac{1}{y}\)
b) \(B=\sqrt{4+x^2y^2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
c) \(C=\sqrt{9+x^2y^2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
d) \(D=\sqrt{25+x^2y^2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
e) \(E=\sqrt{k+x^2y^2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) với k > 0
Cho biểu thức: \(P=\dfrac{xy-\sqrt{x^2-1}.\sqrt{y^2-1}}{xy+\sqrt{x^2-1}.\sqrt{y^2-1}}\). Tính giá trị biểu thứuc với \(x=\dfrac{1}{2}\left(a+\dfrac{1}{a}\right);y=\dfrac{1}{2}\left(b+\dfrac{1}{b}\right);a,b\ge1\)
Tìm GTNN của:
a. \(A=x-\sqrt{x}\)
b. \(B=x-\sqrt{x-2005}\)
c. \(C=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)
d. \(D=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)
e. \(E=\left|x-2\right|+\left|2x-3\right|+\left|4x-1\right|+\left|5x-10\right|\)
f. \(F=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)
g. \(G=\sqrt{x^2+1}+\sqrt{x^2-2x+5}\)
h. \(H=\sqrt{x^2-8x+17}+\sqrt{x^2+16}\)
i. \(I=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)
k. \(K=x+y\) biết x và y là các số dương thỏa mãn \(\dfrac{a}{x}+\dfrac{b}{y}=1\)(a và b là các hằng số dương )
l. \(L=\left(x+y\right)\left(y+z\right)\) với các số dương x,y,z và \(xyz\left(x+y+z\right)=1\)
m. \(M=x^4+y^4+z^4\) biết rằng \(xy+yz+zx=1\)
n. \(N=a^3+b^3+c^3\) biết a,b,c lớn hơn -1 và \(a^2+b^2+c^2=12\)
o. \(O=\dfrac{x}{2}+\dfrac{2}{x-1}\) với x>1
p. \(P=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z là các số dương và \(x+y+z=1\)
q. \(Q=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z là các số dương và \(x^2+y^2+z^2=1\)
r. \(R=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\) với a,b,c là các số dương và \(a+b+c=6\)
s. \(S=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\) với a,b,c là các số dương và \(a+b+c=1\)
t. \(T=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+d}+\dfrac{d^2}{d+a}\) với a,b,c,d là các số dương và \(a+b+c+d=1\)
u. \(U=\dfrac{x^2+y^2}{x-y}\) với x>y>0 và xy=1
v. \(V=\dfrac{5-3x}{\sqrt{1-x^2}}\)
w. \(W=\dfrac{1}{x}+\dfrac{1}{y}\) với x>0, y>0 và \(x^2+y^2=1\)
x. \(X=\left(1+x\right)\left(1+\dfrac{1}{y}\right)+\left(1+y\right)\left(1+\dfrac{1}{x}\right)\) với x>0, y>0 và \(x^2+y^2=1\)
y. \(Y=\dfrac{2}{2-x}+\dfrac{1}{x}\) với 0<x<2
z. \(Z=3^x+3^y\) với x+y=4