Cho đường tròn (O;R) và M là một điểm nằm bên ngoài đường tròn. Từ M vẽ hai tiếp tuyến MA và MB với đường tròn (O) tại A và B. Qua M vẽ cát tuyến MCD ( C nằm giữa M và D ). Gọi I là trung điểm của C và D . Chứng minh rằng: a) AIOB nội tiếp đường tròn b) gọi K là trung điểm của AM. Tia BK cắt (o) tại điểm thứ 2 là P. Tia MP cắt (o) tại điểm thứ 2 là N. Chứng minh: MC.MD=MD.MN
cho đường tròn(o;r), từ điểm a ở bên ngoài đường tròn kẻ 2 tiếp tuyến ab, ac với đường tròn(o) (b,c là tiếp điểm) từ b kẻ đường thẳng song song ac cắt đường tròn(o) tại d(d khác b), đường thẳng ad cắt đường tròn (o) tại e( e khác d) a) chứng minh tứ giác aboc nội tiếp b) chứng minh ab²= ae×ad c) giả sử oa=2r. Tính góc bec và diện tích obac d) so sánh góc cea và góc bec
Từ điểm M nằm ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD không đi qua O (C nằm giữa M và D) của đường tròn tâm O. Đoạn thẳng OM cắt AB và (O) theo thứ tự tại H và I. Chứng minh rằng:
a) Tứ giác MAOB là tứ giác nội tiếp và
b) Bốn điểm O, H, C, D thuộc một đường tròn.
c) CI là tia phân giác của .
cho đường tròn(O;R) từ điểm M nằm ngoài(O) vẽ hai tiếp tuyến MA, MB( A,B là tiếp điểm). Vẽ đường kính AC của(O), MC cắt (O) tại D(D khác C). OM cắt AB tại H a) chứng minh tứ giác MAOB nội tiếp và MB^2=MC.MD b)chúng minh MO.MH=MC.MD c) CH cắt (O) tại I(Ikhacs C). chúng minh tứ giác COIM nội tiếp d) tính số đo góc MIB
. Cho (O), đường kính AB, I là điểm nằm giữa 2 điểm O và A. Đường thẳng vuông góc với AB tại I cắt đường tròn tại 2 điểm C và D. Lấy điểm H thuộc cung BC nhỏ, tiếp tuyến của đường tròn (O) tại H cắt đường thẳng CD tại S
a) Nối AH cắt CD tại K. Chứng minh: T/g BHKI nội tiếp
b) C/m: SK = SH c) C/m: SC.SD = SH2
Bài 4: ( 3 điểm) Cho đường tròn (O). Từ một điểm M nằm ngoài đường tròn kẻ tiếp tuyến MA và cát tuyến MBC với (O) ( A là tiếp điểm, MB< MC), B và A năm cùng phía đối với MO). Kẻ đường kính AD của đường tròn (O),MO cắt CD tại E. Gọi H là hình chiếu của A trên MO.
1/ Chứng minh tứ giác AHEC nội tiếp
2/ Chứng minh MBA đồng dạng MAC và MB.MC= MH.MO
3/ Chứng minh BDC =1/2 BHC và AE//BD
cho một đường tròn (O;R) từ điểm A nằm ngoài đường tròn vẽ hai tiếp tuyến AB và AC với đường tròn.
a, chứng minh ABOC nội tiếp.
b,D là trung điểm AC và BD cắt đường tròn tại E, AE cắt đường tròn tại F. Chứng minh AB2= AE•AF
c, i là giao điểm ao với (o) chứng minh BC=CF
Cho đường tròn (O;R) và một điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA, MB (A,B lá các tiếp điểm). N là điểm di động trên đoạn OA. Đường thẳng MN cắt (O) tại C và D (C nằm giữa M và N). Chứng minh:
a) Tứ giác MAOB nội tiếp
b) AC.BD=AD.BC
Câu III ( 3 điểm). Cho tam giác ABC nhọn nội tiếp đường tròn (O). Tiếp tuyến qua B,C của (O) cắt nhau tại T. Đường thẳng qua T song song với OA cắt trung trực CA, AB lần lượt tại các điểm E,F
1) Chứng minh rằng hai tam giác OEF và ABC đồng dạng
2) Gọi J là tâm đường tròn ngoại tiếp tam giác OEF. Chứng minh rằng: OJ//BC
3) Gọi K là trực tâm tam giác OEF. CMR: AT chia đôi đoạn thẳng OK