Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:
\(x+\sqrt[3]{x-\dfrac{1}{x}}=2+\dfrac{1}{x}\)
\(\Leftrightarrow x-\dfrac{1}{x}+\sqrt[3]{x-\dfrac{1}{x}}-2=0\)
Đặt \(\sqrt[3]{x-\dfrac{1}{x}}=t\)
\(\Rightarrow t^3+t-2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\)
\(\Leftrightarrow t=1\Rightarrow x-\dfrac{1}{x}=1\)
\(\Leftrightarrow x^2-x-1=0\Leftrightarrow...\)