Đề đúng không em nhỉ? \(x_2=y_2^2+y_1\) hay \(x_2=y_2^2+2y_1\)?
Đề đúng không em nhỉ? \(x_2=y_2^2+y_1\) hay \(x_2=y_2^2+2y_1\)?
Gọi y1,y2 là hai nghiệm của phương trình \(y^2+3y+1=0\). Tìm p và q sao cho
\(x^2+px+q=0\) có hai nghiệm là \(x_1=y_1^2+2y_2,x_2=y_2^2+2y_1\).
Cho phương trình 2x2-x-10=0 có hai nghiện là x1 và x2. Không giải phương trình hãy lập nghiệm lần lượt là:
a) \(\left\{{}\begin{matrix}y_1=\dfrac{1}{x_1}+\dfrac{1}{x_2}\\y_2=x^2_1+x_2^2\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}y_1=\dfrac{2x_1}{x_1}+\dfrac{2x_1}{x_2}\\y_2=x^2_1+x_2^2\end{matrix}\right.\)
cho 2 pt : \(ax^2+bx+c=0\left(1\right)\) và \(cy^2+by+a=0\left(2\right)\)
gọi \(x_1;x_2\) là nghiệm của pt (1), gọi \(y_1;y_2\) là nghiệm của pt (2)
tìm min của \(M=x_1^2+x_2^2+y_1^2+y_2^2\)
help me @Ace Legona
Bài 1 Cho pt bậc hai \(x^2+\left(m-1\right)x+m-4=0\)
a, CMR pt luôn có 2 nghiệm pb
b, Xác định m để \(\frac{x_1+2}{x_2+1}+\frac{x_2+2}{x_1+1}+4=0\)
Bài 2 CHo parabol (P): y=\(-x^2\) và đường thẳng (d):y=(m+1)x+m-4. Tìm m để (d) cắt (P) tại 2 điểm pb có tung độ \(y_1,y_2\) sao cho \(\left(2+y_1\right)\left(2+y_2\right)+7=0\)
GIÚP MIK VỚI MIK ĐANG CẦN GẤP
Giả sử \(x_1,x_2\) là hai nghiệm của phương trình \(x^2+px+q=0\). Hãy lập một phương trình bậc hai có hai nghiệm là \(x_1+x_2\) và \(x_1.x_2\)
Có phương trình \(x^2\) -5x-6=0 . Nghiệm của phương trình là \(x_1\) và \(x_2\) . Lập phương trình biết 2 nghiệm của phương trình là \(y_1\) = \(x_1^4\) và \(y_2\) =\(x_2^4\)
Cho phương trình \(x^2+px-5=0\) có nghiệm là \(x_1\) và \(x_2\). Hãy lập phương trình có hai nghiệm là hai số được cho trong mỗi trường hợp sau :
a) \(-x_1\) và \(-x_2\)
b) \(\dfrac{1}{x_1}\) và \(\dfrac{1}{x_2}\)
Gọi x1, x2 là nghiệm của phương trình x2+2x-4=0. Hãy lập phương trình bậc hai có 2 nghiệm là:
a) x1+2 và x2+2
b) \(\dfrac{1}{x_1+1}\) và \(\dfrac{1}{x_2+1}\)
c) \(\dfrac{x_1}{x_2}\)và \(\dfrac{x_2}{x_1}\)
d) \(x^2_1\)+\(x^2_2\) và \(x_1\)+\(x_2\)
Mọi người giúp mình với. Cần gấp trước 19h15 hôm nay, mình cảm ơn trước ạ.
Cho phương trình:\(x^2\)\(-\left(m+1\right)\)\(x\)\(-2=0\) (với m là tham số). Tìm giá trị của m để phương trình đã cho có hai nghiệm phân biệt \(x_1\),\(x_2\) sao cho:
\(\left(1-\dfrac{2}{x_1+1}\right)^2\)\(+\left(1-\dfrac{2}{x_2+1}\right)^2=2\)