cho hình bình hành ABCD , có tâm I(1;2) và các đường thẳng AB, BC,CD,DA lần lượt đi qua các đi qua các điểm M(0;1) ,N(4;2) P(-1;-1) và Q(0;3) . viết phương trình các đường thẳng chứa 4 cạnh của hình bình hành
Cho tứ giác ABCD, trên AB, CD lần lượt lấy điểm M, N sao cho \(\overrightarrow{AM}=k\overrightarrow{AB}\) , \(\overrightarrow{DN}=k\overrightarrow{DC}\) \(\left(k\ne1\right)\).
a, Phân tích \(\overrightarrow{MN}\) theo \(\overrightarrow{AD}\) và \(\overrightarrow{BC}\)
b, Gọi P, Q, I lần lượt là các điểm thuộc các cạnh AD, BC, MN sao cho \(\overrightarrow{AP}=l\overrightarrow{AD},\overrightarrow{BQ}=l\overrightarrow{BC},\overrightarrow{MI}=l\overrightarrow{MN}\). Chứng minh rằng: I, Q, P thẳng hàng
Cho tứ giác ABCD, Gọi I,J,K lần lượt là trung điểm các cạnh AD,BC,CD và G là trung điểm của IJ c/m
a) AB-CD=2IJ
b) GA+GB+GC+GD=0
c)AB+AC+AD=4AG
d) 2(AB+AJ+KA+DA) = 3DB
Cho điểm O nằm trong hình bình hành ABCD. Các đường thẳng đi qua O song sóng với các cạnh của hình bình hành lần lượt cắt AB, BC, CD, DA tại M, N, P, Q. gọi E là giao điểm của BQ và DM , F là giao điểm của BP và DN. Tìm điều kiện để E, F, O thẳng hàng
Bài 1 : cho tứ giác ABCD. Gọi M,N,P,Q là trung điểm của AB, BC, CD và DA, Chứng minh véc tơ MP = MN + MQ
Bài 2: Trong mp Oxy cho tam giác OAB đều cạnh = 1 . AB sog song với Ox, A là điểm có tọa độ dương. Tìm tọa độ đỉnh B
BÀi 3: Cho tam giác ABC. Các điểm M,N,P là trung điểm của cạnh AB, BC, CA. chứng minh véc tơ AN+BP+CM = 0
Cho tứ giác ABCD.Gọi E,F,G,H lần lượt là trung điểm của AB,BC,CD,DA và M là 1 điểm tùy ý.Chứng minh:
a,\(\overrightarrow{AF}+\overrightarrow{BG}+\overrightarrow{CH}+\overrightarrow{DE}=\overrightarrow{0}\)
b,\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{ME}+\overrightarrow{MF}+\overrightarrow{MG}+\overrightarrow{MH}\)
c,\(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=4\overrightarrow{AK}\) (K là trung điểm FH)
1. Gọi I, J lần lượt là trung điểm của 2 đoạn thẳng AB và CD. Chứng minh rằng: \(2\overrightarrow{IJ}\) =\(\overrightarrow{AC}\) + \(\overrightarrow{BD}\) = \(\overrightarrow{AD}\) + \(\overrightarrow{BC}\)
2. Cho tam giác ABC, các điểm M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: \(\overrightarrow{AM}\) + \(\overrightarrow{BN}\) + \(\overrightarrow{CD}\) = \(\overrightarrow{O}\)
cho tứ giác ABCD gọi M,N là hai điểm di động trên AB,CD sao cho \(\frac{MA}{MB}=\frac{ND}{NC}\)và I, J lần lượt là trung điểm của AD,BC
a, tính vectoIJ theo vectoAB,DC
b, chứng minh trung điểm P của MN nằm trên đường thẳng IJ