Cho bốn điểm A,B,C,D.Gọi I,J lần lượt là trung điểm của AB và CD
a) chứng minh \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
b)GỌi P,Q là trung điểm của các đoạn thẳng AC và BD; M,N là trung điểm của các đoạn thẳng AD và BC.Chứng minh rằng 3 đoạn thẳng IJ,PQ và MN có chung trung điểm
Cho 4 điểm A,B,C,D. Gọi E,F,G lần lượt là trung điểm của AB,CD,EF. Chứng minh
a,\(\overrightarrow{AC}+\overrightarrow{BD}=2\overrightarrow{EF}\)
b,\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}\)
c,\(\overrightarrow{AB}+\overrightarrow{AC+}\overrightarrow{AD}=4\overrightarrow{AG}\)
MÌNH CẦN GẤP GIÚP MÌNH NHA
Bài 1: Cho tam giác ABC vuông tại A, BC=10cm, AC=6cm. Tính /\(\overline{CA}-\overline{CB}\)/.
Bài 2: Cho tam giác ABC:
a) Xác định điểm M thỏa mãn: \(\overline{MA}-\overline{MB}+\overline{MC}=0\)
b) G là trọng tâm của tam giác ABC. Chứng minh rằng:\(\overline{GA}+2\overline{GB}+3\overline{GC}=\overline{AC}\)
Bài 3: Gọi I,J lần lượt là trung điểm của các đoạn thẳng AB và CD. Chứng minh rằng:\(\overline{AD}+\overline{BC}=\overline{BD}+\overline{AC}=2\overline{IJ}\)
cho tứ giác ABCD gọi M,N là hai điểm di động trên AB,CD sao cho \(\frac{MA}{MB}=\frac{ND}{NC}\)và I, J lần lượt là trung điểm của AD,BC
a, tính vectoIJ theo vectoAB,DC
b, chứng minh trung điểm P của MN nằm trên đường thẳng IJ
Cho hình thang vuông ABCD tại A và B có các đáy AD=a, BC=3a, cạnh AB=2a.
a) Tính \(\overrightarrow{AB}.\overrightarrow{BD}\); \(\overrightarrow{BC}.\overrightarrow{BD}\) và \(\overrightarrow{AC}.\overrightarrow{BD}\)
b) Gọi I, J lần lượt trung điểm AB, CD. Tính \(\overrightarrow{AC}.\overrightarrow{IJ}\)
Cho tứ giác ABCD, gọi E,F,G,H là trung điểm của AB, BC, CD, DA. M,N là trung điểm của BD, AC và O là trung điểm EG: CM: véc tơ AB+ véc tơ CD = 2 véc tơ NM
Cho HCN ABCD tâm O. Gọi M,N lần lượt là trung điểm của OA và CD. Bt \(\overrightarrow{MN}=a.\overrightarrow{AB}+b\overrightarrow{AD}\) . Tính a+b
1. Gọi I, J lần lượt là trung điểm của 2 đoạn thẳng AB và CD. Chứng minh rằng: \(2\overrightarrow{IJ}\) =\(\overrightarrow{AC}\) + \(\overrightarrow{BD}\) = \(\overrightarrow{AD}\) + \(\overrightarrow{BC}\)
2. Cho tam giác ABC, các điểm M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: \(\overrightarrow{AM}\) + \(\overrightarrow{BN}\) + \(\overrightarrow{CD}\) = \(\overrightarrow{O}\)