;V a là nghiệm dương của phương trình nào -.-
;V a là nghiệm dương của phương trình nào -.-
Cho các số thực không âm a,b. Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{\left(a^2+2b+3\right).\left(b^2+2a+3\right)}{\left(2a+1\right).\left(2b+1\right)}\)
Gọi x1 , x2 là các nghiệm của phương trình 2x2 -3x -2 = 0 (1). Không giải phương trình (1), hãy tính giá trị các biểu thức sau :
a) A = x12+ x22
b) B =
Tính giá trị của biểu thức: \(A=\dfrac{1-ax}{1+ax}\sqrt{\dfrac{1+bx}{1-bx}}\) với \(x=\dfrac{1}{a}.\sqrt{\dfrac{2a}{b}-1}\left(0< a< b< 2a\right)\)
Tính giá trị của biểu thức: \(A=\dfrac{1-ax}{1+ax}\sqrt{\dfrac{1+bx}{1-bx}}\) với \(x=\dfrac{1}{a}.\sqrt{\dfrac{2a}{b}-1}\left(0< a< b< 2a\right)\)
giả sử a à nghiệm phương trình x2+x-1=0. Tính
A=\(\dfrac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
cho phương trình x2-2ax+2a+2=0 a là tham số . Tìm giá trị của a để phương trình có 2 nghiệm x1,x2thỏa mãn điều kiện x1=x22
Cho
\(\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{3}\)
\(\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2a\right)\left(c+2b\right)}=3\)
Hãy tính \(\left(2\sqrt{a}+3\sqrt{b}-4\sqrt{c}\right)^2\)
Cho a , b , c là các số thực dương thỏa mãn : \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2015\)
Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Tìm giá trị lớn nhất của biểu thức: \(A=3\sqrt{2a-1}+a\sqrt{5-4a^2}\) với \(\dfrac{1}{2}\le a\le\dfrac{\sqrt{5}}{2}\)