Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Núi non tình yêu thuần k...

Gọi a, b, c lần lượt là độ dài các cạnh của \(\Delta ABC\) sao cho thỏa điều kiện \(a^3+b^3+c^3=3abc\) . CMR: \(\sin^2A+\cos^2B=1\)

Akai Haruma
18 tháng 6 2019 lúc 11:49

Lời giải:
\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0\)

\(\Leftrightarrow [(a+b)^3+c^3]-3ab(a+b+c)=0\)

\(\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0\)

\(\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\)

Vì $a,b,c$ là độ dài 3 cạnh tam giác nên $a+b+c\neq 0$. Do đó $a^2+b^2+c^2-ab-bc-ac=0$

\(\Leftrightarrow \frac{(a-b)^2}{2}+\frac{(b-c)^2}{2}+\frac{(c-a)^2}{2}=0\)

Bản thân mỗi số \((a-b)^2; (b-c)^2; (c-a)^2\geq 0, \forall a,b,c\) nên để tổng trên bằng $0$ thì:

\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)

Khi đó, tam giác $ABC$ đều.

\(\Rightarrow \sin ^2A+\cos ^2B=\sin ^2A+\cos ^2A=1\) (đpcm)

Akai Haruma
5 tháng 7 2019 lúc 0:26

Lời giải:
\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0\)

\(\Leftrightarrow [(a+b)^3+c^3]-3ab(a+b+c)=0\)

\(\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0\)

\(\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\)

Vì $a,b,c$ là độ dài 3 cạnh tam giác nên $a+b+c\neq 0$. Do đó $a^2+b^2+c^2-ab-bc-ac=0$

\(\Leftrightarrow \frac{(a-b)^2}{2}+\frac{(b-c)^2}{2}+\frac{(c-a)^2}{2}=0\)

Bản thân mỗi số \((a-b)^2; (b-c)^2; (c-a)^2\geq 0, \forall a,b,c\) nên để tổng trên bằng $0$ thì:

\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)

Khi đó, tam giác $ABC$ đều.

\(\Rightarrow \sin ^2A+\cos ^2B=\sin ^2A+\cos ^2A=1\) (đpcm)


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
Đỗ Thanh Huyền
Xem chi tiết
Lunox Butterfly Seraphim
Xem chi tiết
Anh Tú Dương
Xem chi tiết
Vampire
Xem chi tiết
Đặng Thanh Mai
Xem chi tiết
Tdq_S.Coups
Xem chi tiết
Cậu bé nhỏ nhắn
Xem chi tiết