Lời giải:
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0\)
\(\Leftrightarrow [(a+b)^3+c^3]-3ab(a+b+c)=0\)
\(\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0\)
\(\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\)
Vì $a,b,c$ là độ dài 3 cạnh tam giác nên $a+b+c\neq 0$. Do đó $a^2+b^2+c^2-ab-bc-ac=0$
\(\Leftrightarrow \frac{(a-b)^2}{2}+\frac{(b-c)^2}{2}+\frac{(c-a)^2}{2}=0\)
Bản thân mỗi số \((a-b)^2; (b-c)^2; (c-a)^2\geq 0, \forall a,b,c\) nên để tổng trên bằng $0$ thì:
\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)
Khi đó, tam giác $ABC$ đều.
\(\Rightarrow \sin ^2A+\cos ^2B=\sin ^2A+\cos ^2A=1\) (đpcm)
Lời giải:
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0\)
\(\Leftrightarrow [(a+b)^3+c^3]-3ab(a+b+c)=0\)
\(\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0\)
\(\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\)
Vì $a,b,c$ là độ dài 3 cạnh tam giác nên $a+b+c\neq 0$. Do đó $a^2+b^2+c^2-ab-bc-ac=0$
\(\Leftrightarrow \frac{(a-b)^2}{2}+\frac{(b-c)^2}{2}+\frac{(c-a)^2}{2}=0\)
Bản thân mỗi số \((a-b)^2; (b-c)^2; (c-a)^2\geq 0, \forall a,b,c\) nên để tổng trên bằng $0$ thì:
\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)
Khi đó, tam giác $ABC$ đều.
\(\Rightarrow \sin ^2A+\cos ^2B=\sin ^2A+\cos ^2A=1\) (đpcm)