Áp dụng liên tiếp bđt Cauchy-Schwarz và AM-GM
\(\dfrac{x}{1+y^2}+\dfrac{y}{1+x^2}=\dfrac{x^2}{x+y^2x}+\dfrac{y^2}{y+x^2y}\)
\(\ge\dfrac{\left(x+y\right)^2}{x+y+y^2x+x^2y}=\dfrac{4}{x+y+xy\left(x+y\right)}\)
\(=\dfrac{4}{2+2xy}\ge\dfrac{4}{2+\dfrac{\left(x+y\right)^2}{2}}=\dfrac{4}{4}=1\)
\("="\Leftrightarrow x=y=1\)