1. \(P=\dfrac{\sqrt{x}+4}{\sqrt{x}-1}:\left(\dfrac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{2}{\sqrt{x}+3}\right)\)
\(P=\dfrac{\sqrt{x}+4}{\sqrt{x}-1}:\left(\dfrac{3\sqrt{x}+1-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\right)\)
\(P=\dfrac{\sqrt{x}+4}{\sqrt{x}-1}:\left(\dfrac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\right)\)
\(P=\dfrac{\sqrt{x}+4}{\sqrt{x}-1}:\left(\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\right)\)
\(P=\dfrac{\sqrt{x}+4}{\sqrt{x}-1}.\sqrt{x}-1\)
P=\(\sqrt{x}+4\)
b) \(P=\dfrac{x}{4}+5\)
⇔\(\sqrt{x}+4=\dfrac{x}{4}+5\)
⇔\(\dfrac{x}{4}-\sqrt{x}+1=0\)
⇔\(x-4\sqrt{x}+4=0\)
⇔\(\left(\sqrt{x}-2\right)^2=0\)
⇔\(\sqrt{x}-2=0\)
⇔\(\sqrt{x}=2\)
⇔\(x=4\)
Vậy x=4 thì P=\(\dfrac{x}{4}+5\)
Bài 1:
a) Ta có: \(P=\dfrac{\sqrt{x}+4}{\sqrt{x}-1}:\left(\dfrac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\dfrac{2}{\sqrt{x}+3}\right)\)
\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-1}:\left(\dfrac{3\sqrt{x}+1}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-1}:\dfrac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\sqrt{x}+4\)
b) Ta có: \(P=\dfrac{x}{4}+5\)
\(\Leftrightarrow\sqrt{x}+4=\dfrac{1}{4}x+5\)
\(\Leftrightarrow\dfrac{1}{4}x-\sqrt{x}+1=0\)
\(\Leftrightarrow x-4\sqrt{x}+4=0\)
\(\Leftrightarrow x=4\)