Bài 2:
PT hoành độ giao điểm:
$x^2-2x+m=0$
Để $(P)$ và $(d)$ cắt nhau tại 2 điểm phân biệt thì pt trên phải có 2 nghiệm $x_1,x_2$ phân biệt. Điều này xảy ra khi $\Delta'=1-m>0\Leftrightarrow m< 1$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=m\end{matrix}\right.\)
Khi đó: $y_1+y_2+x_1^2x_2^2=6(x_1+x_2)$
$\Leftrightarrow (2x_1-m)+(2x_2-m)+(x_1x_2)^2=6(x_1+x_2)$
$\Leftrightarrow -2m+m^2=8$
$\Leftrightarrow m^2-2m-8=0$
$\Leftrightarrow (m-4)(m+2)=0$
Vì $m< 1$ nên $m=-2$
Bài 3:
Gọi số chai nước sát khuẩn lớp 10A và 10B làm lần lượt là $a$ và $b$ chai. ĐK: $a,b\in\mathbb{Z}^+$
Theo bài ra ta có:
\(\left\{\begin{matrix} a+b=250\\ a.1,25+b.1,2=250.1,22\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=250\\ a.1,25+b.1,2=305\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a=100\\ b=150\end{matrix}\right.\) (chai)
Vậy.........