\(7,x^4+x^3+x^2-1=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)=\left(x^3+x-1\right)\left(x+1\right)\)
\(8,x^2y^2+1-x^2-y^2=\left(x^2y^2-y^2\right)-\left(x^2-1\right)\\ =y^2\left(x^2-1\right)-\left(x^2-1\right)=\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)\)
\(10,x^4-x^2+2x-1=x^4-\left(x-1\right)^2=\left(x^2-x+1\right)\left(x^2+x-1\right)\\ 11,3a-3b+a^2-2ab+b^2=3\left(a-b\right)+\left(a-b\right)^2=\left(3+a-b\right)\left(a-b\right)\\ 12,a^2+2ab+b^2-2a-2b+1=\left(a+b\right)^2-2\left(a+b\right)+1=\left(a+b-1\right)^2\\ 13,a^2-b^2-4a+4b=\left(a-b\right)\left(a+b\right)-4\left(a-b\right)=\left(a+b-4\right)\left(a-b\right)\\ 14,a^3-b^3-3a+3b=\left(a-b\right)\left(a^2+ab+b^2\right)-3\left(a-b\right)=\left(a-b\right)\left(a^2+ab+b^2-3\right)\\ 15,x^3+3x^2-3x-1=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)=\left(x-1\right)\left(x^2+4x+1\right)\)
1)
=0,25y.(64x3+z3)
2)
=x2(x2-4x+4)
=x2(x-2)2
5)
=x2(x+1)-4(x+1)
=(x2-4)(x+1)
=(x-2)(x+2)(x+1)
6)
=x2(x-1)-(x-1)
=(x2-1)(x-1)
=(x-1)(x+1)(x-1)
=(x-1)2(x+1)