Ta có:
$p^2=5q^2+4$ chia 5 dư 4 suy ra $p=5k+2(k\in \mathbb{N}^*)$
Ta có:
$(5k+2)^2=5q^2+4\Leftrightarrow 5k^2+4k=q^2\Rightarrow q^2\vdots k$
Mặt khác q là số nguyên tố và $q>k$ nên $k=1$. Thay vào ta được $p=7,q=3$
Bài 2:
\( \left\{ \begin{array}{l} \dfrac{{{x^2}}}{y} + \dfrac{{{y^2}}}{x} = 18\\ x + y = 12 \Rightarrow y = 12 - x \end{array} \right.\left( {x \ne 0,y \ne 0} \right)\\ \dfrac{{{x^2}}}{{12 - x}} + \dfrac{{{{\left( {12 - x} \right)}^2}}}{x} = 18\\ \Leftrightarrow {x^2} - 12x + 32 = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 4\\ x = 8 \end{array} \right. \)
Với \(x=4\) \(\Rightarrow y=12-4=8\)
Với \(x=8\) \(\Rightarrow y=12-8=4\)
Vậy nghiệm hệ phương trình \(\left(4;8\right),\left(8;4\right)\)