Do E thuộc Ox nên tọa độ có dạng: \(E\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{EA}=\left(-1-x;2\right)\\\overrightarrow{EB}=\left(2-x;1\right)\\\overrightarrow{EC}=\left(6-x;-5\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}=\left(7-3x;-2\right)\)
\(\Rightarrow\left|\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}\right|=\sqrt{\left(7-3x\right)^2+\left(-2\right)^2}\ge\sqrt{\left(-2\right)^2}=2\)
Dấu "=" xảy ra khi \(7-3x=0\Rightarrow x=\dfrac{7}{3}\)
\(\Rightarrow E\left(\dfrac{7}{3};0\right)\)