\(x^4+x^2+1=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
Để: \(x^4+x^2+1⋮x^2+ax+b\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x+1\right)⋮x^2+ax+b\)
\(\Leftrightarrow x^2-x+1=x^2+ax+b\Rightarrow a=-1;b=1\)
Hoặc: \(x^2+x+1=x^2+ax+b\Rightarrow a=1;b=1\)
Vậy \(\left(a,b\right)=\left(-1;1\right),\left(1;1\right)\)