Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Triều Nguyễn Quốc

Giair Hệ phương trình nghiệm nguyên : \(\left\{{}\begin{matrix}x+y+z=3\\x^3+y^3+z^3=3\end{matrix}\right.\)

Akai Haruma
18 tháng 1 2021 lúc 14:22

Lời giải:

Theo hằng đẳng thức đáng nhớ:

$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)$

$\Leftrightarrow 3=27-3(x+y)(y+z)(x+z)$

$\Leftrightarrow (x+y)(y+z)(x+z)=8$Đặt $(x+y,y+z,x+z)=(a,b,c)$ thì $abc=8$ và $a+b+c=6$Do $a+b+c=6>0$ nên $(a,b,c)$ sẽ là 3 số dương hoặc $1$ dương $2$ âm.

TH1: $a,b,c$ đều dương.

Áp dụng BĐT AM-GM: $a+b+c\geq 3\sqrt[3]{abc}=3\sqrt[3]{8}=6$

Dấu "=" xảy ra khi $a=b=c=2$

$\Leftrightarrow x+y=y+z=x+z=2\Leftrightarrow x=y=z=1$

TH2: $a,b,c$ có 1 số dương 2 số âm. Giả sử $a$ dương và $b,c$ âm.

$a+b+c=6$ nên $a>6$. Mà $abc=8$ nên $a=8$

$\Rightarrow bc=1$ và $b+c=-2$

$\Rightarrow b=c=-1$

$\Rightarrow x=y=4; z=-5$

Vậy $(x,y,z)=(1,1,1); (4,4,-5)$ và hoán vị.

 


Các câu hỏi tương tự
Triều Nguyễn Quốc
Xem chi tiết
Ex Crush
Xem chi tiết
Lunox Butterfly Seraphim
Xem chi tiết
Nguyễn Hồng Nhung
Xem chi tiết
Nguyễn Bảo Uyên
Xem chi tiết
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Nguyễn Thiện Minh
Xem chi tiết
Lê Thị Bích Thảo
Xem chi tiết
Thánh cao su
Xem chi tiết