\(mx^2-3x=x^2+1\Leftrightarrow\left(m-1\right)x^2-3x-1=0\)
Nếu m =1 thì \(\left(m-1\right)x^2-3x-1=0\) có dạng \(-3x-1=0\) và có nghiệm \(x=-\frac{1}{3}\)
Nếu m \(\ne\)1 thì \(\left(m-1\right)x^2-3x-1=0\) là phương trình bậc hai ẩn x, có \(\Delta=4m+5\)
* Nếu \(\Delta<0\) hay là \(m<-\frac{5}{4}\) thì \(\left(m-1\right)x^2-3x-1=0\) vô nghiệm
* Nếu \(\Delta\ge0\) hay là \(m\ge-\frac{5}{4}\) ; \(m\ne1\) thì
\(\left(m-1\right)x^2-3x-1=0\) \(\Leftrightarrow x=\frac{3-\sqrt{4m+5}}{2\left(m-1\right)}:=x_1\) hoặc \(x=\frac{3+\sqrt{4m+5}}{2\left(m-1\right)}:=x_2\)
Ta có kết luận :
* Khi \(m<-\frac{5}{4}\) thì phương trình vô nghiệm
* Khi \(m=1\) thì phương trình có một nghiệm \(x=-\frac{1}{3}\)
* Khi \(m\ge-\frac{5}{4};m\ne1\) thì phương trình có hai nghiệm \(x=x_1;_{ }\) \(x=x_2\)