\(Đkxđ:\left\{{}\begin{matrix}x\ge-2\\B.phương-2vế-không-âm\end{matrix}\right.\)
\(\Leftrightarrow2\left(x^2+8\right)=25\left(x^3+8\right)\)
\(\Leftrightarrow2x^4-25x^3+31x^2-72=0\)
\(\Leftrightarrow\left(2x^2-5x+6\right)\left(x^2-10x-12\right)=0\)
\(Vì:2x^2-5x+6=2\left(x-\frac{5}{4}\right)^2+\frac{23}{8}>0\)
\(Nếu:x^2-10x-12=0\Leftrightarrow\left(x-5\right)^2=37\Leftrightarrow\left[{}\begin{matrix}x-5=\sqrt{37}\\x-5=-\sqrt{37}\end{matrix}\right.\)
\(\Rightarrow x_1=5+\sqrt{37}\) và \(x_2=5-\sqrt{37}\)
Vậy .........