ĐK: \(-1\le x< 0;x\ge1\)
TH1: \(-1\le x< 0\Rightarrow VP< 0;VT\ge0\Rightarrow\) vô nghiệm
TH2: \(x\ge1\)
\(pt\Leftrightarrow x-\sqrt{1-\dfrac{1}{x}}=\sqrt{x-\dfrac{1}{x}}\)
\(\Leftrightarrow x^2+1-\dfrac{1}{x}-2x\sqrt{1-\dfrac{1}{x}}=x-\dfrac{1}{x}\)
\(\Leftrightarrow x^2-x+1-2\sqrt{x^2-x}=0\)
\(\Leftrightarrow\left(\sqrt{x^2-x}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{x^2-x}=1\)
\(\Leftrightarrow x^2-x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\left(tm\right)\\x=\dfrac{1-\sqrt{5}}{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{1+\sqrt{5}}{2}\)
Vậy ...