a/ ĐKXĐ: ...
Đặt \(\sqrt{x^2-2x-3}=a\ge0\Rightarrow x^2-2x=a^2+3\)
\(a^2+3+3a=7\)
\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2-2x-3=1\Rightarrow x^2-2x-4=0\Rightarrow x=...\)
b/ \(\Leftrightarrow x^2-4x+6-\sqrt{x^2-4x+12}=0\)
\(\Leftrightarrow x^2-4x+12-\sqrt{x^2-4x+12}-6=0\)
Đặt \(\sqrt{x^2-4x+12}=a>0\)
\(a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-4x+12}=3\Rightarrow x^2-4x+3=0\Rightarrow...\)
c/ \(\Leftrightarrow x^2+11+\sqrt{x^2+11}-42=0\)
Đặt \(\sqrt{x^2+11}=a\)
\(a^2+a-42=0\Rightarrow\left[{}\begin{matrix}a=6\\a=-7\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+11}=6\Rightarrow x^2+11=36\Rightarrow...\)
d/ ĐKXĐ: ...
\(\Leftrightarrow x^2+2x-1+\sqrt{2x^2+4x+1}=0\)
Đặt \(\sqrt{2x^2+4x+1}=a\ge0\Rightarrow2x^2+4x=a^2-1\Rightarrow x^2+2x=\frac{a^2-1}{2}\)
\(\frac{a^2-1}{2}-1+a=0\)
\(\Leftrightarrow a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+4x+1}=1\Rightarrow2x^2+4x=0\Rightarrow...\)
e/
\(\Leftrightarrow x^2+5x+4-5\sqrt{x^2+5x+28}=0\)
Đặt \(\sqrt{x^2+5x+28}=a>0\Rightarrow x^2+5x=a^2-28\)
\(a^2-28+4-5a=0\)
\(\Leftrightarrow a^2-5a-24=0\Rightarrow\left[{}\begin{matrix}a=8\\a=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+5x+28}=8\Rightarrow x^2+5x-36=0\Rightarrow...\)
P/s: tất cả các nghiệm sau khi giải ra x chắc chắn đều thỏa mãn