Lời giải:
Đặt $\sin x=a; \cos x=b(a,b\in [-1;1])$ thì ta có:
\(\left\{\begin{matrix} 3a+b+2=0\\ a^2+b^2=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=-(3a+2)\\ a^2+b^2=1\end{matrix}\right.\)
\(\Rightarrow a^2+(3a+2)^2=1\)
\(\Leftrightarrow 10a^2+12a+3=0\Rightarrow a=\frac{-6\pm \sqrt{6}}{10}\)
Với $a=\frac{-6\pm \sqrt{6}}{10}$ thì \(x=2k\pi +\arcsin \frac{-6+\sqrt{6}}{10}\) hoặc \(x=(2k+1)\pi -\arcsin \frac{-6+\sqrt{6}}{10}\)Với $a=\frac{-6-\sqrt{6}}{10}$ thì \(x=2k\pi +\arcsin \frac{-6-\sqrt{6}}{10}\) hoặc \(x=(2k+1)\pi -\arcsin \frac{-6-\sqrt{6}}{10}\)
Với $k$ nguyên nào đó.