ĐK:\(x\ge1\) hoặc x=0
Xét x=0 thì VT=VP
Xét x\(\ge1\) thì:
Ta có:\(\sqrt{x^3-x^2}=\sqrt{x\left(x^2-x\right)}\le\dfrac{x+x^2-x}{2}=\dfrac{x^2}{2}\left(AM-GM\right)\)
\(\sqrt{x^2-x}\le\dfrac{x^2-x+1}{2}\le\dfrac{x^2}{2}\left(AM-GM;x\ge1\right)\)
\(\Rightarrow VP\le\dfrac{x^2+x-1+x^2-x+1}{2}=x^2=VT\)
Dấu "=" xảy ra khi:\(\left\{{}\begin{matrix}x^2-x=x\\x^2-x=1\\x=1\end{matrix}\right.\)(hệ vô nghiệm)
Vậy pt có nghiệm duy nhất x=0