Đặt \(\left\{{}\begin{matrix}2,5-x=a\\x-1,5=b\end{matrix}\right.\).
Ta có hpt \(\left\{{}\begin{matrix}a+b=1\left(1\right)\\a^4+b^4=1\end{matrix}\right.\).
Do \(a^4,b^4\le1\Rightarrow-1\le a,b\le1\). (*)
Kết hợp với (1) ta có \(0\le a,b\le1\).
\(\Rightarrow\left\{{}\begin{matrix}a\ge a^4\\b\ge b^4\end{matrix}\right.\).
Do đó \(a+b\ge a^4+b^4\Rightarrow a+b\ge1\).
Theo (1) thì đẳng thức phải xảy ra, kết hợp với (*) ta có \(\left[{}\begin{matrix}a=0;b=1\\a=1;b=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2,5\\x=1,5\end{matrix}\right.\).
Vậy...