\(\left(x-2\right)^2=x\left(x-3\right)\)
\(\Leftrightarrow x^2-4x+4-x^2+3x=0\)
\(\Leftrightarrow-x+4=0\)
\(\Leftrightarrow x=4\)
\(S=\left\{4\right\}\)
\(\left(x-2\right)^2=x\left(x-3\right)\\ \Leftrightarrow\left(x-2\right)^2-x\left(x-3\right)=0\\ \Leftrightarrow x^2-4x+4-\left(x^2-3x\right)=0\\ \Leftrightarrow x^2-4x+4-x^2+3x=0\\ \Leftrightarrow-x=-4\\ \Leftrightarrow x=4\)
(x-2)2=x(x-3)
=> x2 - 4x + 4 = x2 - 3x
=> x = 4
Vậy, x = 4.
\(\left(x-2\right)^2=x\left(x-3\right)\)
⇔\(x^2-4x+4=x^2-3x\)
\(\Leftrightarrow-x+4=0\)
\(\Leftrightarrow-x=-4\)
\(\Leftrightarrow x=4\)
Ta có: \(\left(x-2\right)^2=x\left(x-3\right)\)
\(\Leftrightarrow x^2-4x+4=x^2-3x\)
\(\Leftrightarrow x^2-4x+4-x^2+3x=0\)
\(\Leftrightarrow4-x=0\)
\(\Leftrightarrow x=4\)
Vậy: S={4}