\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]=24\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)=24\)
Dat \(x^2+3x+2=a\left(a>0\right)\)
\(\Leftrightarrow\left(a-2\right)a=24\)
\(\Leftrightarrow a^2-2a-24=0\)
\(\Leftrightarrow a^2-6a+4a-24=0\)
\(\Leftrightarrow\left(a-6\right)\left(a+4\right)=0\\ \left[{}\begin{matrix}a=6\\a=-4\left(Loai\right)\end{matrix}\right.\)
Thay a=6:
\(x^2-3x+4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vayy...
\(x(x+1)(x+2)(x+3)=24\)
\(\Leftrightarrow[x(x+3)][(x+1)(x+2)]-24=0 \)
\(\Leftrightarrow(x^2+3x)(x^2+3x+2)-24=0\)
\(\Leftrightarrow[(x^2+3x+1)-1][(x^2+3x+1)+1]-24=0\)
Đặt \(a=x^2+3x+1\)
\(\Leftrightarrow(a-1)(a+1)-24=0\)
\(\Leftrightarrow (a^2-1)-24=0\)
\(\Leftrightarrow a^2-1-24=0\)
\(\Leftrightarrow a^2-25=0\)
\(\Leftrightarrow(a-5)(a+5)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-5=0\\a+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}a=5\\a=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+3x+1=5\\x^2+3x+1=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\left(vn\right)\end{matrix}\right.\\ \Leftrightarrow x\left(x+3\right)-4=0\\ \Leftrightarrow x\left(x+3\right)=4\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x+3=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm pt \(S=\{-1;4\}\).
x(x+1)(x+2)(x+3)=24
<=>(x2+3x)(x2+3x+2)=24
<=>(x2+3x)2+2(x2+3x)+1=25
<=>(x2+3x+1)2=52=(-5)2
<=> x2+3x+1=5 hoặc x2+3x+1=-5
<=>x2+3x-4=0 hoặc x2+3x+6=0(vô nghiệm)
<=>x=1 hoặc x=-4
Vậy S = {1;-4}