Giải phương trình sau:
\(\sqrt{x^2-4x-8}+\sqrt{x^2+2\left(1-\sqrt{3}\right)x+8}+\sqrt{x^2+2\left(1+\sqrt{3}\right)x+8}=6\sqrt{2}\).
Giai phương trình : \(\frac{4}{\sqrt{7}-\sqrt{3}}+\frac{6}{3+\sqrt{3}}+\frac{\sqrt{7}-7}{\sqrt{7}-1}\)
Câu 1 :
Cho biểu thức \(P=\left(\dfrac{x^2}{x^2-3}+\dfrac{2x^2-24}{x^4-9}\right).\dfrac{7}{x^2+8}vớix\ne\pm\sqrt{3}\)
1.Rút gọn P
2.Tìm x để P nhận giá trị nguyên
Câu 2 :
1.Giải phương trình : \(\dfrac{1}{2x-2021}+\dfrac{1}{3x+2022}=\dfrac{1}{15x-2023}-\dfrac{1}{10x-2024}\)
2.Cho đa thức \(P\left(x\right)=2x^3-x^2+ax+bvàQ\left(x\right)=x^2-4x+4\).Tìm a,b để đa thức P(x) chia hết cho đa thức Q(x)
Câu 3:
1.Cho hai số thực x,y thỏa mãn \(0< xy\le1\) . Chứng minh \(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}\le\dfrac{2}{xy+1}\)
2.Cho \(S=a^3_1+a^3_2+a^3_3+...+a^3_{100}\) với \(a_1,a_2,a_3,...a_{100}\) là các số nguyên thỏa mãn \(a_1+a_2+a_3+...+a_{100}=2021^{2022}.CMR:S-1⋮6\)
Tìm m để 2 phương trình sau tương đương:
PT(1): \(x=1-2mx\)
PT(2): \(m^2x-m=2x-\sqrt{2}\) ( m là tham số)
Tìm m để 2 phương trình sau tương đương: PT(1): x=1-2mx
PT(2): \(m^2x-m=2x-\sqrt{2}\) ( m là tham số)
Tìm m để 2 phương trình sau tương đương: PT(1): \(x=1-2mx\)
PT(2): \(m^2x-m=2x-\sqrt{2}\) ( m là tham số)
Giải phương trình sau:
a)\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+1}}+\frac{1}{\sqrt{x+1}+\sqrt{x}}=1\)
giai pt \(\frac{1}{1-x^2}=\frac{3x}{\sqrt{1-x^2}}-1\)
Giải phương trình:
x+y+z=2(\(2\sqrt{x+1}+3\sqrt{y+2}+4\sqrt{z+3}\) )