\(\sqrt{x-2\sqrt{x-3}-2}=1\)
=> \(x-2\sqrt{x-3}=1^2=1\)
=> \(-2\sqrt{x-3}=1-x+2\)
=> \(-2\sqrt{x-3}=3-x\)
=> \(\left(-2\sqrt{x-3}\right)^2=\left(3-x\right)^2\)
=> \(4\left(x-3\right)=9-6x+x^2\)
=> \(4x-12=9-6x+x^2\)
=> \(4x-12-9+6x-x^2=0\)
=> \(10x-21-x^2=0\)
Mình xin hết ( biết có vậy )
\(\sqrt{x-2\sqrt{x-3}+2}=1\)
\(\Leftrightarrow\sqrt{x-3-2\sqrt{x-3}+1}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-3}-1\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-3}-1\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}-1=1\\\sqrt{x-3}-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)
Vậy....
\(\sqrt{x-2\sqrt{x-3}-2}=1\\ \Leftrightarrow\sqrt{x-3-2\sqrt{x-3}+1}=1\\ \Leftrightarrow\sqrt{\left(\sqrt{x-3}-1\right)^2}=1\\ \Leftrightarrow\sqrt{x-3}-1=1\\ \Leftrightarrow\sqrt{x-3}=2\\ \Leftrightarrow x-3=4\\ \Leftrightarrow x=7\)