a: =>|2x-1|=3
=>2x-1=3 hoặc 2x-1=-3
=>2x=4 hoặc 2x=-2
=>x=2 hoặc x=-1
b: =>3x+4=49
=>3x=45
hay x=15
c: =>|x-4|=5
=>x-4=5 hoặc x-4=-5
=>x=9 hoặc x=-1
d: =>|3x-1|=2
=>3x-1=2 hoặc 3x-1=-2
=>3x=3 hoặc 3x=-1
=>x=1 hoặc x=-1/3
a: =>|2x-1|=3
=>2x-1=3 hoặc 2x-1=-3
=>2x=4 hoặc 2x=-2
=>x=2 hoặc x=-1
b: =>3x+4=49
=>3x=45
hay x=15
c: =>|x-4|=5
=>x-4=5 hoặc x-4=-5
=>x=9 hoặc x=-1
d: =>|3x-1|=2
=>3x-1=2 hoặc 3x-1=-2
=>3x=3 hoặc 3x=-1
=>x=1 hoặc x=-1/3
giải phương trình vô tỉ sau
1 ) \(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}=\dfrac{1}{2.\sqrt{2}}.\left(7x^2-x+4\right)\)
2) \(\left(x+3\right)\sqrt{\left(4-x\right)\left(x+12\right)}=28-x\)
3) \(x^4+2x^3+2x^2-2x+1=\left(x^3+x\right)\sqrt{\dfrac{1-x^2}{x}}\)
1.Giải pt:
a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+4}=4-2x-x^2\)
b)\(x^2+\left(3-\sqrt{x^2+2}\right)x=1+2\sqrt{x^2+2}\)
c)\(\left(x+1\right)\sqrt{x^2-2x+3}=x^2+1\)
d)
Giải PT:
a) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
b) \(\sqrt{18x-9}-0,5\sqrt{2x-1}+\dfrac{1}{2}\sqrt{25\left(2x-1\right)}+\sqrt{49\left(2x-1\right)}=24\)
c) \(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=4\left(5+\sqrt{x-2}\right)\)
d) \(\sqrt{\dfrac{1}{3x+2}}-\dfrac{1}{2}\sqrt{\dfrac{9}{3x+2}}+\sqrt{\dfrac{16}{3x+2}}-5\sqrt{\dfrac{1}{12x+8}}=1\)
e) \(\dfrac{1}{2}\sqrt{\dfrac{49x}{x+2}}-3\sqrt{\dfrac{x}{4x+8}}-\sqrt{\dfrac{x}{x+2}}-\sqrt{5}=0\)
Giair phương trình:
1) \(\sqrt[5]{32-x^2}-\sqrt[5]{1-x^2}=4\)
2) \(\sqrt{x}+\sqrt[4]{20-x}=4\)
3) \(x^3+1=2\sqrt{3x-1}\)
4) \(\sqrt[3]{x-1}+3=\sqrt[4]{82-x}\)
5)
\(a.\left(x+3\sqrt{x}+2\right)\left(x+9\sqrt{x}+18\right)=168x\)
\(b.\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
Giải phương trình
a,\(\sqrt{4-3x}=8\)
b,\(\sqrt{4x-8}-12\sqrt{\dfrac{x-2}{9}}=-1\)
c,\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\)
giải phương trình vô tỉ sau
1) \(\sqrt[3]{6x+1}=2x\) (mình lập phương rồi nhưng không tách được giúp mình với nhé
2) \(\left(x+4\right)\left(x+1\right)-\sqrt{3x^2+5x+2}=6\)
3) \(\sqrt{x+2}+\sqrt{5-x}+\sqrt{10+2x-x^2}=4\)
Giải phương trình
a, \(x^2+\sqrt[3]{x^4-x^2}=2x+1\)
b, \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
Giải PT: \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)
Giải phương trình
1/ \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
2/ \(^{x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}}\)
1) \(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\sqrt{6}-\left(\frac{5}{2}\sqrt{2}+12\right)\)
2) \(\frac{26}{2\sqrt{3}+5}-\frac{4}{\sqrt{3}-2}\)
3) \(\sqrt{x^2-6x+9}=2x\)
4) \(\sqrt{4x^2+1}=2x-1\)
5) \(\sqrt{x^2-4x+4}=\sqrt{x^2-2x+1}\)