\(ĐK:x\le1\)
Đặt \(\sqrt{1-x}=t\ge0\Leftrightarrow x=1-t^2\)
\(PT\Leftrightarrow6t-\left(1-t^2\right)=5\sqrt{1-t}\\ \Leftrightarrow t^2-\left(1-t\right)+5t-5\sqrt{1-t}=0\\ \Leftrightarrow\left(t-\sqrt{1-t}\right)\left(t+\sqrt{1-t}+5\right)=0\\ \Leftrightarrow t-\sqrt{1-t}=0\left(t+\sqrt{1-t}+5>0\right)\\ \Leftrightarrow t=\sqrt{1-t}\\ \Leftrightarrow t^2=1-t\\ \Leftrightarrow t=\dfrac{\sqrt{5}-1}{2}\Leftrightarrow1-x=\dfrac{3-\sqrt{5}}{2}\\ \Leftrightarrow x=\dfrac{-1\pm\sqrt{5}}{2}\left(tm\right)\)