\(x^3-6x^2+11x-6=0\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow\begin{cases}x-1=0\\x^2-5x+6=0\end{cases}\)
\(\Leftrightarrow x\in\left\{1;2;3\right\}\)
x3-6x2+11x-6=0
<=>x3-x2-5x2+5x+6x-6=0
<=>x2.(x-1)-5x.(x-1)+6.(x-1)=0
<=>(x-1)(x2-5x+6)=0
<=>(x-1)(x-2)(x-3)=0
<=>x=1 hoặc x=2 hoặc x=3
Vậy S={1;2;3}