\(ab+bc+ca=0\Leftrightarrow\dfrac{ab+bc+ca}{abc}=0\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\\\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=-\dfrac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^3-\dfrac{1}{a^3}-\dfrac{1}{b^3}-\dfrac{1}{c^3}=\dfrac{3}{4}\)
\(\Leftrightarrow3\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\left(\dfrac{1}{c}+\dfrac{1}{a}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{a}=-\dfrac{1}{b}\\\dfrac{1}{b}=-\dfrac{1}{c}\\\dfrac{1}{c}=-\dfrac{1}{a}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
TH1: \(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{1}{\: a^3}+\dfrac{1}{b^3}-\dfrac{1}{a^3}=\dfrac{1}{b^3}=\dfrac{3}{4}\Rightarrow b^3=\dfrac{4}{3}\Rightarrow\left\{{}\begin{matrix}b=\sqrt[3]{\dfrac{4}{3}}\\a=-c\end{matrix}\right.\)
2 TH còn lại tương tự
Vậy pt ko có đồng thời 3 nghiệm a,b,c nguyên