\(\dfrac{m-3}{x-4}=m^2-m-6\)
=>\(\dfrac{m-3}{x-4}-\left(m-3\right)\left(m+2\right)=0\)
=>\(\left(m-3\right)\left(\dfrac{1}{x-4}-m-2\right)=0\)
=>\(\dfrac{1}{x-4}-m-2=0\)
=>\(\dfrac{1}{x-4}=m+2\)
=>\(\left(m+2\right)\left(x-4\right)=1\)
=>\(x\left(m+2\right)-4m-8-1=0\)
=>\(x\left(m+2\right)=4m+9\)
Để phương trình có nghiệm duy nhất thì \(m+2\ne0\)
=>\(m\ne-2\)
mà \(m\ne3\)
nên \(m\notin\left\{-2;3\right\}\)
Để phương trình vô nghiệm thì m+2=0
=>m=-2