a: \(\Leftrightarrow\dfrac{1}{2}\cdot\cos2x\cdot\cos x-\cos2x=0\)
\(\Leftrightarrow\cos2x=0\)
\(\Leftrightarrow2x=\dfrac{\Pi}{2}+k\Pi\)
hay \(x=\dfrac{\Pi}{4}+\dfrac{k\Pi}{2}\)
b: \(\Leftrightarrow\dfrac{1}{2}\cdot\left[\cos\left(5x-x\right)-\cos\left(5x+x\right)\right]=\dfrac{1}{2}\cdot\left[\cos\left(3x-2x\right)-\cos5x\right]\)
\(\Leftrightarrow\cos4x-\cos6x=\cos x-\cos5x\)
\(\Leftrightarrow x=\dfrac{\Pi}{2}+k\Pi\)