a, (2x-5)2-(x+2)2=0
\(\Leftrightarrow\left(2x-5-x-2\right)\left(2x-5+x+2\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)\(\)
b, \(\left(x+5\right)\left(4x-1\right)+x^2-25=0\)
\(\Leftrightarrow\left(x+5\right)\left(4x-1\right)+\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(4x-1+x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(5x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\5x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{6}{5}\end{matrix}\right.\)
a, (2x-5)2- (x+2)2=0
<=> (2x-5-x-2)(2x-5+x+2)=0
<=> (x-7)(3x-3)=0
<=> (x-7)(x-1)3=0
<=>\(\left[{}\begin{matrix}x-7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)
Vậy S=\(\left\{7;1\right\}\)
b, (x+5)(4x-1)+x2-25=0
<=> (x+5)(4x-1)+(x-5)(x+5)=0
<=> (x+5)(4x-1+x-5)=0
<=> (x+5)(5x-6)=0
<=>\(\left[{}\begin{matrix}x+5=0\\5x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{6}{5}\end{matrix}\right.\)
Vậy S=\(\left\{-5;\dfrac{6}{5}\right\}\)