Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mai Anh

Giải phương trình: \(3Cot^2x+2\sqrt{2}Sin^2x=\left(2+3\sqrt{2}\right)Cosx\)

Hồng Phúc
1 tháng 8 2021 lúc 14:28

ĐK: \(x\ne k\pi\)

Đặt \(\left\{{}\begin{matrix}cotx=a\\sinx=b\end{matrix}\right.\left(a\in R;b\in\left[-1;1\right]\right)\), khi đó:

\(3cot^2x+2\sqrt{2}sin^2x=\left(2+3\sqrt{2}\right)cosx\)

\(\Leftrightarrow3a^2+2\sqrt{2}b^2=\left(2+3\sqrt{2}\right)ab\)

\(\Leftrightarrow3a^2-2ab+2\sqrt{2}b^2-3\sqrt{2}ab=0\)

\(\Leftrightarrow\left(3a-2b\right)\left(a-\sqrt{2}b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3a=2b\\a=\sqrt{2}b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3cotx=2sinx\\cotx=\sqrt{2}sinx\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3cosx=2sin^2x\\cosx=\sqrt{2}sin^2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3cosx=2-2cos^2x\\cosx=\sqrt{2}-\sqrt{2}cos^2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2cos^2x+3cosx-2=0\\\sqrt{2}cos^2x+cosx-\sqrt{2}=0\end{matrix}\right.\)

TH1: \(2cos^2x+3cosx-2=0\Leftrightarrow cosx=\dfrac{1}{2}\Leftrightarrow x=\pm\dfrac{\pi}{3}+k2\pi\)

TH2: \(\sqrt{2}cos^2x+cosx-\sqrt{2}=0\Leftrightarrow cosx=\dfrac{\sqrt{2}}{2}\Leftrightarrow x=\pm\dfrac{\pi}{4}+k2\pi\)


Các câu hỏi tương tự
Nguyễn Linh Chi
Xem chi tiết
Ngô Thành Chung
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyên Nguyên
Xem chi tiết
Hoàng Anh
Xem chi tiết
Nguyễn thị Phụng
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
tran duc huy
Xem chi tiết