1,
đk x>= 1
pt <=>\(4x^2-5x+1=-2\sqrt{x-1}\)
<=> \(\left(x-1\right)\left(4x-1\right)=-2\sqrt{x-1}\)
Đặt \(\sqrt{x-1}=t\left(t\ge0\right)\)
\(t^2\left(4t^2+3\right)+2t=0\)
\(\Leftrightarrow4t^4+3t^2+2t=0\)
\(\left[{}\begin{matrix}t=0\\t=-\frac{1}{2}\left(l\right)\\2t^2+t-2=0\left(l\right)\end{matrix}\right.=>t=0=>x=1\left(TMĐK\right)\)