ĐKXĐ: ...
\(\left\{{}\begin{matrix}x+\frac{1}{x}+y+\frac{1}{y}=5\\x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{x}+y+\frac{1}{y}=5\\\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=13\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=u\\y+\frac{1}{y}=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u+v=5\\u^2+v^2=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u+v=5\\\left(u+v\right)^2-2uv=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u+v=5\\uv=6\end{matrix}\right.\)
Theo Viet đảo, u và v là nghiệm của: \(t^2-5t+6=0\Rightarrow\left[{}\begin{matrix}t=2\\t=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+\frac{1}{x}=2\\y+\frac{1}{y}=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+\frac{1}{x}=3\\y+\frac{1}{y}=2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow...\)