\(\left\{{}\begin{matrix}x^2y+2=y^2\\xy^2+2=x^2\end{matrix}\right.\)
☘ Trừ vế theo vế
\(\Rightarrow x^2y-xy^2=y^2-x^2\)
\(\Leftrightarrow xy\left(x-y\right)+\left(x-y\right)\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y+xy\right)=0\)
☘ Trường hợp 1: \(x=y\)
☘ Trường hợp 2: \(x+y+xy=0\)
\(\Leftrightarrow y\left(1+x\right)=-x\)
\(\Leftrightarrow y=-\dfrac{x}{1+x}\) thay vào phương trình thứ 2
\(\Rightarrow x\left(-\dfrac{x}{1+x}\right)^2+2=x^2\)
\(\Leftrightarrow x^3+2\left(1+x\right)^2-x^2\left(1+x\right)^2=0\)
\(\Leftrightarrow x^4+x^3-x^2-4x-2=0\)
\(\Leftrightarrow\left(x^2+2x+2\right)\left(x^2-x-1\right)=0\)
⚠ Tự giải tiếp nha. Mà chưa học hệ phương trình đối xưng gì đó nên không chắc đâu.
Lấy pt (1)-pt(2) ta có:
\(x^2y-xy^2=y^2-x^2\)
<=>\(xy(x-y)+(x-y)(x+y)=0\)
<=>\((x-y)(x+y+xy)=0\)
=>x=y hoặc x+y+xy=0=>y(x+1)=-x=>y=\(\frac{-x}{x+1} \)
Với x=y
=>\(x^3-x^2+2=0\)
=>x=-1
=>y=-1
Với y=\(\frac{-x}{x+1} \)
=>\(\frac{-x^3}{x+1} +2-\frac{x^2}{(x+1)^2}=0 \)
tự giải nốt nha