\(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=xyz\)
Dấu = xảy ra khi \(x=y=z=\dfrac{1}{3}\)
\(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=xyz\)
Dấu = xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x+y+z=1\\x^4+y^4+z^4=xyz\end{matrix}\right.\)
giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y+z}=\dfrac{1}{2}\\\dfrac{1}{y}+\dfrac{1}{z+x}=\dfrac{1}{3}\\\dfrac{1}{z}+\dfrac{1}{x+y}=\dfrac{1}{4}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x}{y}-\dfrac{y}{x}=\dfrac{5}{6}\\x^2-y^2=5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\dfrac{5}{\sqrt{x-7}}+\dfrac{3}{\sqrt{y+6}}=\dfrac{13}{6}\\\dfrac{7}{\sqrt{x-7}}-\dfrac{2}{\sqrt{y+6}}=\dfrac{5}{3}\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x+y+z=3\\\left(z+y\right)\left(y-3\right)\left(z-3\right)\end{matrix}\right.\)
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}x\left(y-z\right)=4\\y\left(z-x\right)=9\\z\left(x+y\right)=1\end{matrix}\right.\)
Giải HPT
1)\(\left\{{}\begin{matrix}x^2+y^2+z=1\\x^2+y+z^2=1\\x+y^2+z^2=1\end{matrix}\right.\)
2)
\(\left\{{}\begin{matrix}xyz=x+y+z\\yzt=y+z+t\\ztx=z+t+x\\txy=t+x+y\end{matrix}\right.\)
3)
\(\left\{{}\begin{matrix}x^3+y^2=2\\x^2+xy+y^2-y=0\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}x^2y^2-2x+y^2=0\\2x^2-4x+y^3+3=0\end{matrix}\right.\)
giải hệ pt bằng phương pháp thế:
1) \(\left\{{}\begin{matrix}x+y=3\\x+2y=5\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x-y=3\\y=2x+1\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}2x+3y=4\\y-x=-2\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}x=y+2\\x=3y+8\end{matrix}\right.\)
5) \(\left\{{}\begin{matrix}2x-y=1\\3x-4y=2\end{matrix}\right.\)
giúp mk vs ạ mai mk hc rồi
Giai hệ phương trình:
\(\left\{{}\begin{matrix}x+y+z=\dfrac{1}{2}\\\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{1}{xyz}=4\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}>0\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)=2012\\x^2+z^2-4\left(y+z\right)+8=0\end{matrix}\right.\)
giải hệ phương trình
\(\left\{{}\begin{matrix}x^2+y^2-y=1\\2x\left(x+1\right)+2y^2-3y=4\end{matrix}\right.\)