Gỉai hệ phương trình
1) \(\left\{{}\begin{matrix}xy+x+y=3\\\frac{1}{x^2+2x}+\frac{1}{y^2+2y}=\frac{2}{3}\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}\frac{1}{\sqrt{x}}+\sqrt{2-\frac{1}{y}}=2\\\frac{1}{\sqrt{y}}+\sqrt{2-\frac{1}{x}}=2\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}\sqrt{xy+\frac{x-y}{x^2+y^2+1}}+\sqrt{x}=y+\sqrt{y}\\\left|x-1\right|+\left|y-2\right|=1+x^2-y^2\end{matrix}\right.\)
GIẢI HỆ PHƯƠNG TRÌNH ( Nâng cao )
\(1,\left\{{}\begin{matrix}x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=5\\\left(xy-1\right)^2=x^2-y^2+2\end{matrix}\right.\)
\(2,\left\{{}\begin{matrix}\left(2-\frac{1}{2x+y}\right)\sqrt{y}=2\\\left(2+\frac{1}{2x+y}\right)\sqrt{x}=2\end{matrix}\right.\)
Giải hệ phương trình :
1, \(\left\{{}\begin{matrix}x-2y=1\\2x-y=4\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{x}{y}-\frac{y}{y+12}=1\\\frac{x}{y+12}-\frac{x}{y}=2\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}3x^2+y^2=5\\x^2-3y=1\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\sqrt{3x-1}-\sqrt{2y+1}=1\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
giải hệ phương trình
\(a,\left\{{}\begin{matrix}\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\\y+\frac{y}{\sqrt{x^2-1}}=\frac{35}{12}\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+1\right)=25\left(y+1\right)\\x^2+xy+2y^2+x-8y=9\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}2x^2+3xy-2y^2-5\left(2x-y\right)=0\\x^2-2xy-3y^2+15=0\end{matrix}\right.\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}2+6y=\frac{x}{y}-\sqrt{x-2y}\\\sqrt{x+\sqrt{x-2y}}=x+3y-2\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2-7y+2\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x^2\left(y+1\right)=6y-2\\x^4y^2+2x^2y^2+y\left(x^2+1\right)=12y^2-1\end{matrix}\right.\)
Giải các hệ phương trình:
\(a,\left\{{}\begin{matrix}x-2\sqrt{2}y=\sqrt{5}\\\sqrt{2}x+y=1-\sqrt{10}\end{matrix}\right.\)
\(b\left\{{}\begin{matrix}\frac{1}{3}x+\frac{1}{2}y=2\\3x+y=11\end{matrix}\right.\)
Giải hệ phương trình: \(a,\left\{{}\begin{matrix}x=\frac{1-y^2}{1+y^2}\\y=\frac{1-x^2}{1+x^2}\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}x^2+\sqrt{x}=2y\\y^2+\sqrt{y}=2x\end{matrix}\right.\)
1.\(\left\{{}\begin{matrix}x\left(x-2\right)\left(2x-y\right)=6\\\left(x-3\right)^2+2y=10\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\frac{1}{\sqrt{x}}+\sqrt{2-\frac{1}{y}}=2\\\frac{1}{\sqrt{y}}+\sqrt{2-\frac{1}{x}}=2\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{matrix}\right.\)