Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng

Giải hệ phương trình \(\left\{{}\begin{matrix}2x^2-2xy-y^2=2\\2x^3-3x^2-3xy^2-y^3+1=0\end{matrix}\right.\)

Hiển Lê Quang
26 tháng 9 2018 lúc 22:57

Ta có: \(2x^3-3x^2-3xy^2-y^3+1=0\)

\(\left(2x^3-2x^2y-xy^2\right)+\left(2x^2y-2xy^2-y^3\right)-3x^2+1=0\)

\(x\left(2x^2-2xy-y^2\right)+y\left(2x^2-2xy-y^2\right)-3x^2+1=0\)

\(2x+2y-3x^2+1=0\)

\(y=3x^2-2x-1\)

Thế y vào \(2x^2-2xy-y^2=2y\) sau đó tìm x


Các câu hỏi tương tự
Ichigo Hollow
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyen Thi Phung
Xem chi tiết
mntlcl
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Lê Hồng Nhung
Xem chi tiết